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Abstract In this paper, we derive an existence result for generalized variational inequalities
associated with multivalued mappings on weakly compact sets under a continuity assump-
tion which is much weaker than the regular complete continuity. As an application, we
prove the existence of exceptional families of elements for such mappings on closed convex
cones in reflexive Banach spaces when the corresponding complementarity problems have no
solutions.
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1 Introduction

Throughout this paper, X denotes a normed space over IR equipped with the norm ‖ · ‖. The
set of all continuous linear functionals from X into IR is written by X∗. For any given x ∈ X
and y ∈ X∗, we shall write the value of y at x as 〈y, x〉.

Let 2X∗
denote the set of all subsets of X . A mapping T from a nonempty set � ⊂ X into

2X∗
will be called a multivalued mapping from � into X∗. The graph of T is defined by

GT = {(x, y) : x ∈ � and y ∈ T (x)}.
The generalized variational inequality GVI(T, �) associated with a multivalued mapping

T from a closed convex set � ⊂ X into X∗ is the problem to find a pair (̂x, ŷ) ∈ GT such
that

〈ŷ, u − x̂〉 ≥ 0 for all u ∈ �.
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Such a pair (̂x, ŷ) will be called a solution of the problem GVI(T, �). We shall say that
the problem GVI(T, �) is solvable if the problem has a solution. When T (x) consists of a
single element of X∗ for every x ∈ X , the mapping T is called single valued, and in this
case, the problem GVI(T, �) becomes the variational inequality problem VI(T, �).

If � is a closed convex cone in X , then the corresponding generalized variational inequality
problem is usually called the multivalued complementarity problem, written by MCP(T, �).
It is well-known that a pair (̂x, ŷ) ∈ GT is a solution of the problem MCP(T, �) if and only
if ŷ ∈ �∗ and 〈ŷ, x̂〉 = 0, where

�∗ = {y ∈ X∗ : 〈y, x〉 ≥ 0 for all x ∈ �}
is the dual cone of �. When T is single valued, the problem MCP(T, �) is usually called
the nonlinear complementarity problem NCP(T, �).

In last decade, the multivalued complementarity problem was studied by several authors
via the notion of exceptional families of elements (EFE for short); see [1–6] and references
there in. For a survey along this direction, see [7,8].

For given a multivalued mapping T from a closed convex cone � ⊂ X into X∗, a family
of elements {xr : r > 0} in � is called an EFE for (T, �) if the following conditions are
satisfied :

(1) lim
r→∞ ‖xr‖ = ∞.

(2) For every r > 0, there exist a yr ∈ T (xr ), a zr ∈ J (xr ) and a real number tr > 0 such
that tr zr + yr ∈ �∗ and 〈tr zr + yr , xr 〉 = 0, where J denotes the normalized duality
mapping on X defined by

J (x) = {y ∈ X∗ : ‖y‖ = ‖x‖ and 〈y, x〉 = ‖x‖2} for x ∈ X .

For every r > 0, let �r = {x ∈ � : ‖x‖ ≤ r}. It follows from [2, Theorem 3.1] that, in
a Banach space X , if the problem MCP(T, �) has no solutions, and if for every r > 0 the
problem GVI(T, �r ) has a solution (xr , yr ), then {xr : r > 0} is an EFE for (T, �). When
X is reflexive, �r are weakly compact. This motivates the consideration of this work.

Most existence results in articles for generalized variational inequalities associated with
mappings defined on weakly compact and convex sets are established under some generalized
monotonicity assumption. It was claimed in [2] that, without monotonicity assumption, the
regular complete continuity is the weakest continuity assumption used so far in the literature
for dealing with such problems, cf. [2, Lemma 4.1]. See Sect. 2 for the definition of regular
complete continuity. The purpose of this paper is to study the solvability of the problem
GVI(T, �) for any given multivalued mapping T from a convex and weakly compact subset
� of X into X∗ with some continuity assumption that is weaker than the regular complete
continuity.

To weaken the regular complete continuity, in Sect. 2, we first introduce a continuity
assumption which is slightly weaker than the regular complete continuity, called the (HD)
condition. Some equivalent statements of the (HD) condition are given in Theorem 2.2. By
relaxing the (HD) condition further, we obtain a much weaker continuity assumption, called
the (WSC) condition.

In Sect. 3, we derive an existence result for generalized variational inequalities associ-
ated with mappings satisfying the (WSC) condition on weakly compact subsets of X . With
this result, we prove that if a mapping on a closed convex cone in a reflexive Banach space
satisfies the (WSC) condition, then either the corresponding complementarity problem has
a solution or there is an EFE for the mapping. By modifying the (WSC) condition slightly,
some more existence results are derived.

123



J Glob Optim (2010) 46:465–473 467

2 The (WSC) condition

This section is used to introduce some conditions that are weaker than the regular complete
continuity. To proceed, we need some notations. We use X∗

b for the space X∗ equipped with
the norm topology, and X∗

s for the space X∗ equipped with the weak-star topology.
For given a sequence {xn}∞n = 1 in X , we write xn −→ x ∈ X when {xn}∞n = 1 converges to

x in norm, and write xn
w−→ x when {xn}∞n = 1 converges weakly to x . For given a sequence

{yn}∞n = 1 in X∗, we write yn −→ y ∈ X∗ when {yn}∞n = 1 is convergent to y in X∗
b , and write

yn
w∗−→ y when {yn}∞n = 1 converges to y in X∗

s .
A multivalued mapping T from a nonempty convex set � ⊂ X into X∗ is regular com-

pletely upper semicontinuous [2] if the following conditions are satisfied.

(R1) T maps every bounded subset of � into a relatively compact subset of X∗
b .

(R2) If {(xn, yn)}∞n = 1 is a sequence in GT with xn
w−→ x ∈ � and yn −→ y ∈ X∗, then

y ∈ T (x).

A single valued mapping T : � −→ X∗ is regular completely continuous if the multi-
valued mapping x �−→ {T (x)} is regular completely upper semicontinuous. In this case, the
condition (R2) becomes :

(R2)′ For any sequence {xn}∞n = 1 in �, if xn
w−→ x ∈ �, then T (xn) −→ T (x).

To weaken the regular complete continuity, we start with the following necessary condition
for multivalued mappings being regular completely upper semicontinuous.

Theorem 2.1 Let T be a multivalued mapping from a nonempty convex subset � of X into
X∗. If T is regular completely upper semicontinuous, then T maps every weakly compact
subset of � onto a compact subset of X∗

b . Consequently, T (x) is compact in X∗
b for every

x ∈ �.

Proof Let E be any weakly compact subset of �, and we prove that T (E) is sequentially
compact in X∗

b . Consider any sequence {yn}∞n = 1 in T (E). For every n, let xn ∈ E be such
that yn ∈ T (xn). It follows from Eberlein-Smulian Theorem [10, 2.8.6, p. 248] that {xn}∞n = 1
has a subsequence weakly convergent to some point x ∈ E . Replacing {xn}∞n = 1 by this

subsequence, we assume that xn
w−→ x . Since T (E) is relatively compact in X∗

b , there is a
subsequence {yp(n)}∞n = 1 of {yn}∞n = 1 such that yp(n) −→ y ∈ X∗. Now, the condition (R2)
implies y ∈ T (x) ⊂ T (E). The proof is complete. �

A multivalued mapping T from a nonempty set � ⊂ X into X∗ is said to have compact
values in X∗

b (resp. in X∗
s ) if T (x) is compact in X∗

b (resp. in X∗
s ) for every x ∈ �.

In view of Theorem 2.1, we first slightly weaken the regular complete continuity by
considering multivalued mappings which map weakly compact sets onto compact sets of
X∗

b . Such multivalued mappings satisfying the condition (R2) can be characterized by the
distances from points of T (xn) to that of T (x). For describing the characterization, we write

δ(A, B) = sup{dist(a, B) : a ∈ A}
for any nonempty subsets A and B of X , where

dist(a, B) = inf{‖a − b‖ : b ∈ B}.
If A is a compact subset of X , then δ(A, B) = dist(a, B) for some a ∈ A. Note that, when
A and B are compact subsets of X , the number max{δ(A, B), δ(B, A)} is the Hausdorff
distance between A and B.
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Theorem 2.2 Let T be a multivalued mapping from a nonempty convex subset � of X into
X∗. If T has compact values in X∗

b , then the following statements are equivalent.

(i) T satisfies the condition (R2) and maps every weakly compact subset of � onto a
compact subset of X∗

b .

(ii) T satisfies the (HD) condition : If {xn}∞n = 1 is a sequence in � with xn
w−→ x ∈ �,

then lim inf
n → ∞ δ(T (xn), T (x)) = 0.

(iii) If {xn}∞n = 1 is a sequence in � with xn
w−→ x ∈ �, and if yn ∈ T (xn), then {yn}∞n = 1

has a subsequence {yp(n)}∞n = 1 such that yp(n) −→ y for some y ∈ T (x).

Proof First, we prove that T satisfies the (HD) condition if and only if it satisfies the condi-
tion (iii). Let {xn}∞n = 1 be an arbitrary sequence in � with xn

w−→ x ∈ �. For every integer
n > 0, let wn ∈ T (xn) be such that

dist(wn, T (x)) = δ(T (xn), T (x)).

If T satisfies the condition (iii), then {wn}∞n = 1 has a subsequence {wp(n)}∞n = 1 convergent
in X∗

b to some point of T (x). This implies that

lim
n → ∞ dist(wp(n), T (x)) = 0 and lim inf

n → ∞ δ(T (xn), T (x)) = 0.

Conversely, assume that T satisfies the (HD) condition, and consider any yn ∈ T (xn) for every
n. Since dist(yn, T (x)) ≤ dist(wn, T (x)), there is a subsequence {yp(n)}∞n = 1 of {yn}∞n = 1
such that

lim
n → ∞ dist(yp(n), T (x)) = 0.

For every n, let zn ∈ T (x) be such that

dist(yn, T (x)) = ‖yn − zn‖.
By the compactness of T (x) in X∗

b , {z p(n)}∞n = 1 has a subsequence {zq(n)}∞n = 1 such that
zq(n) −→ y ∈ T (x). This implies that ‖yq(n) − y‖ −→ 0.

Next, we prove that T satisfies the (HD) condition if the statement (i) holds. For any given
weakly convergent sequence {xn}∞n = 1 in � with the limit x ∈ �, the set E consisting of
all xn together with x is clearly a weakly compact subset of �. For every integer n > 0,
let wn ∈ T (xn) be given as above. Since T (E) is a compact subset of X∗

b , {wn}∞n = 1 has
a subsequence {wp(n)}∞n = 1 such that wp(n) −→ y ∈ X∗. Now, the condition (R2) yields
y ∈ T (x) and dist(wp(n), T (x)) −→ 0. Therefore,

lim inf
n → ∞ δ(T (xn), T (x)) = 0.

Finally, we prove that the statement (i) holds if T satisfies the (HD) condition. Let E be
a nonempty weakly compact subset of �. Let {yn}∞n = 1 be any sequence in T (E), and let
xn ∈ E be such that yn ∈ T (xn) for every integer n > 0. By Eberlein-Smulian Theorem,
{xn}∞n = 1 has a subsequence {x p(n)}∞n = 1 such that x p(n)

w−→ x ∈ E . It now follows from
(iii) that {yn}∞n = 1 has a subsequence converging in X∗

b to some point of T (x) ⊂ T (E). This
proves that T (E) is compact in X∗

b .
To prove that T satisfies the (R2) condition, let {xn}∞n = 1 be any weakly convergent

sequence in � with the limit x ∈ �, and let yn ∈ T (xn) be such that yn −→ y ∈ X∗. Since

dist(yn, T (x)) ≤ δ(T (xn), T (x)) for every n,
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there is a subsequence {yp(n)}∞n = 1 of {yn}∞n = 1 such that

lim
n → ∞ dist(yp(n), T (x)) = 0.

For every n > 0, let zn ∈ T (x) be such that

dist(yn, T (x)) = ‖yn − zn‖.
The compactness of T (x) in X∗

b implies that {z p(n)}∞n = 1 has a subsequence {zq(n)}∞n = 1 such
that zq(n) −→ z ∈ T (x). Thus, ‖yq(n) − z‖ −→ 0 and y = z ∈ T (x). �
Remark 2.1 A multivalued mapping may not have compact values in X∗

b when it satisfies
the (HD) condition. For an example, consider any constant multivalued mapping T from �

into X∗ with its value a non-compact subset of X∗
b .

As before, a single valued mapping T : � −→ X∗ is said to satisfy the (HD) condition if
the multivalued mapping x �−→ {T (x)} does, i.e., for any sequence {xn}∞n = 1 in �,

xn
w−→ x ∈ � �⇒ lim inf

n → ∞ ‖T (xn) − T (x)‖ = 0.

As an immediate consequence of Theorem 2.2, we conclude that a single valued mapping
T : � −→ X∗ satisfies the (HD) condition if and only if T maps every weakly compact
subset of � onto a compact subset of X∗

b and satisfies the condition (R2)′.

Remark 2.2 A single valued mapping T : � −→ X∗ may not satisfy the (HD) condition
when it maps every weakly compact subset of � onto a compact subset of X∗

b . For an exam-
ple, choose any fixed y ∈ X∗ \ {0}, and consider the mapping T : X −→ X∗ defined by
T (0) = 0 and T (x) = y whenever x �= 0. Clearly, T maps every subset of X onto a compact
subset of X∗

b . Now, choose any sequence {xn}∞n = 1 in X \ {0} such that xn −→ 0. Then
lim inf
n → ∞ ‖T (xn) − T (0)‖ = ‖y‖ > 0.

Theorem 2.2 says that a multivalued mapping satisfying the (HD) condition is almost reg-
ular completely upper semicontinuous. To get a weaker condition, we consider any mapping
T : � −→ 2X∗

satisfying the (HD) condition, and assume that T has compact values in X∗
b .

From Theorem 2.2 we conclude that if {(xn, yn)}∞n = 1 is a sequence in GT with xn
w−→ x ∈ �,

then there is a subsequence {yp(n)}∞n = 1 of {yn}∞n = 1 such that yp(n) −→ y ∈ T (x). Conse-
quently,

lim
n → ∞〈yp(n), u − x p(n)〉 = 〈y, u − x〉 for all u ∈ �.

This motivates the following consideration.

2.1 The (WSC) condition

A multivalued mapping T from a nonempty convex subset � of X into X∗ will be said to
satisfy the (WSC) condition if for any sequence {(xn, yn)}∞n = 1 in GT with xn

w−→ x ∈ �,
there exists y ∈ T (x) such that

lim inf
n → ∞〈yn, u − xn〉 ≤ 〈y, u − x〉 for all u ∈ �.

We have proved that if T has compact values in X∗
b and satisfies the (HD) condition then

T satisfies the (WSC) condition.
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A single valued mapping T : � −→ X∗ satisfies the (WSC) condition if for any weakly
convergent sequence {xn}∞n = 1 in � with the weak limit x ∈ �,

lim inf
n → ∞〈T (xn), u − xn〉 ≤ 〈T (x), u − x〉 for all u ∈ �.

Clearly, a single valued mapping satisfies the (WSC) condition if it satisfies the (HD) condi-
tion.

The following example shows that the (WSC) condition is realy weaker than the (HD)
condition.

Example 2.1 Let X denote an infinite dimensional Hilbert space equipped with the inner
product 〈·, ·〉, and let e ∈ X be an arbitrary unit vector. Let T : X −→ X be the continuous
linear mapping defined by T (x) = x ′ −λe whenever x = x ′ + λe ∈ X with λ = 〈x, e〉. We
shall prove that the restriction of T to any nonempty convex set � ⊂ X satisfies the (WSC)
condition, but does not satisfy the (HD) condition whenever � has a nonempty interior.

Let {xn}∞n = 1 be any weakly convergent sequence in X with the weak limit x , and write
xn = x ′

n + λne and x = x ′ + λe, where λn = 〈xn, e〉 and λ = 〈x, e〉. Note that

lim
n → ∞ λn = λ, x ′

n
w−→ x ′ and T (xn)

w−→ T (x). For every n, we have

〈T (xn), u − xn〉 = 〈T (xn), u〉 + λ2
n − ‖x ′

n‖2.

Let {x p(n)}∞n = 1 be any subsequence of {xn}∞n = 1 with lim
n → ∞ ‖x ′

p(n)‖ = s. Then

s ≥ lim inf
n → ∞ ‖x ′

n‖ ≥ ‖x ′‖
and

lim
n → ∞〈T (x p(n)), u − x p(n)〉 = 〈T (x), u〉 + λ2 − s2 ≤ 〈T (x), u − x〉.

This implies that

lim inf
n → ∞〈T (xn), u − xn〉 ≤ 〈T (x), u − x〉.

Therefore, the restriction of T to any convex set � ⊂ X satisfies the (WSC) condition.
Now, we assume that � has a nonempty interior. There exist r > 0 and x0 ∈ � such that

B = {x ∈ X : ‖x − x0‖ ≤ r} ⊂ �.

Note that T (B) is a closed ball in X with nonempty interior since T is a unitary linear operator
on X . Since B is weakly compact and T (B) is not compact, it follows from Theorem 2.2 that
T does not satisfy the (HD) condition.

The above example also shows that a mapping satisfying the (WSC) condition may not
map weakly compacts set into compact sets. By giving an example, we prove below that a
mapping may not satisfy the (WSC) condition when it maps every weakly compact set onto
a compact set.

Example 2.2 Let X and e be given in Example 2.1, and let

� = {x ′ + λe ∈ X : 〈x ′, e〉 = 0 , λ ∈ IR and λ ≥ ‖x ′‖}.
Consider the mapping T : � −→ X defined by

T (0) = 0 and T (x ′ + λe) = e whenever λ > 0.
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It is clear that T maps every weakly compact subset of � onto a compact subset of X . For
every integer n > 0, let xn = λne, where {λn}∞n = 1 is a sequence of positive numbers with
λn −→ 0. Clearly, xn −→ 0. For u = u′ + αe ∈ � \ {0},

lim
n → ∞〈T (xn), u − 0〉 = 〈e, u〉 = α > 0 = 〈T (0), u − 0〉.

This proves that T does not satisfy the (WSC) condition.

3 Existence results for GVI

The main work of this section is to prove the following theorem.

Theorem 3.1 Let T be a multivalued mapping from a nonempty weakly compact and convex
set � ⊂ X into X∗. Then the problem GVI(T, �) has a solution if T has nonempty convex
and compact values in X∗

s , and T satisfies the (WSC) condition.

Theorem 3.1 generalizes [2, Lemma 4.1] in three folds.

(1) In Lemma 4.1 of [2], X is assumed to be a reflexive Banach space; while Theorem 3.1
holds for any normed space.

(2) The (WSC) condition is much weaker than regular complete continuity.
(3) Under the assumption of [2, Lemma 4.1], the image of the mapping in consideration

must be compact in X∗
b ; see Theorem 2.2. However, in Theorem 3.1, the compactness

assumption on the image is not needed; see Example 2.1.

To simplify notations, we first prove Theorem 3.1 for the case where � is compact.

Lemma 3.1 Let T be a multivalued mapping from a nonempty compact and convex set
� ⊂ X into X∗. Then the problem GVI(T, �) has a solution if T has nonempty convex and
compact values in X∗

s , and T satisfies the (WSC) condition.

Proof The assertion follows from [9, Theorem 3.2] if for every u ∈ �, the set

Su = {x ∈ � : 〈y, u − x〉 ≥ 0 for some y ∈ T (x)}
is closed. Note that every Su is nonempty. Let {xn}∞n = 1 be any sequence in Su such that
xn −→ x ∈ �, and let yn ∈ T (xn) be such that 〈yn, u − xn〉 ≥ 0. The (WSC) condition
implies that there exists y ∈ T (x) such that

〈y, u − x〉 ≥ lim inf
n → ∞〈yn, u − xn〉 ≥ 0.

The proof is complete. �
Proof of Theorem 3.1. Let F denote the family of all nonempty finite subsets of �. It follows
from Lemma 3.1 that for every E ∈ F ,

SE = {x ∈ � : there exists y ∈ T (x) such that 〈y, u − x〉 ≥ 0 for all u ∈ co(E)} �= ∅.

where co(E) denotes the convex hull of E . Let S
w

E denote the weak closure of SE . Observe
that the family {S

w

E : E ∈ F} has the finite intersection property. Since � is weakly compact,
we obtain

S =
⋂

E∈F
S

w

E �= ∅.
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Choose any fixed x̂ ∈ S. For every E ∈ F , we write ̂E = E ∪ {̂x} and

DE = {y ∈ T (̂x) : 〈y, u − x̂〉 ≥ 0 for all u ∈ co(̂E) }.
We claim that

D =
⋂

E∈F
DE �= ∅.

This claim will complete the proof. Indeed, if ŷ ∈ D, then

〈ŷ, (1 − t )̂x + tu − x̂〉 ≥ 0 for every u ∈ � and for 0 ≤ t ≤ 1.

In particular, 〈ŷ, u − x̂〉 ≥ 0. This proves that (̂x, ŷ) is a solution of GVI(T, �).
For the proof of the claim, we first prove that every DE is closed in X∗

s . If {yα} is a net in

DE with yα
w∗−→ y ∈ X∗, then for u ∈ co(̂E),

〈y, u − x̂〉 = lim
α

〈yα, u − x̂〉 ≥ 0.

The compactness of T (̂x) implies that y ∈ T (̂x) and y ∈ DE .
Note that DE2 ⊂ DE1 whenever E1, E2 ∈ F with E1 ⊂ E2. By the compactness of T (̂x),

the claim will follow if DE �= ∅ for every E ∈ F . Since x̂ ∈ S
w
̂E , the weak compactness

of S
w
̂E implies that there is a sequence {xn}∞n = 1 in S

̂E such that xn
w−→ x̂ . For every n, let

yn ∈ T (xn) be such that 〈yn, u − xn〉 ≥ 0 for all u ∈ co(̂E). The (WSC) condition implies
that there exists y ∈ T (̂x) such that for all u ∈ co(̂E),

〈y, u − x̂〉 ≥ lim inf
n → ∞〈yn, u − xn〉 ≥ 0.

This proves that y ∈ DE . �
Corollary 3.1 Let � be a nonempty weakly compact and convex subset of X. If a mapping
T : � −→ X∗ satisfies the (WSC) condition, then the problem VI(T, �) has a solution.

Corollary 3.2 Let X be a reflexive Banach space, and let T be a multivalued mapping from
a closed convex cone � ⊂ X into X∗. Assume that T has nonempty convex and compact
values in X∗

s , and T satisfies the (WSC) condition. Then either the problem MCP(T, �) has
a solution, or there is an EFE for (T, �).

Corollary 3.3 Let � be a closed convex cone in a reflexive Banach space X. If a mapping
T : � −→ X∗ satisfies the (WSC) condition, then either the problem NCP(T, �) has a
solution, or there is an EFE for (T, �).

By slightly modifying the (WSC) condition, we obtain another existence result as given
below. For any nonempty convex set � ⊂ X , let �w denote the weak topology on �.

Theorem 3.2 Let T be a multivalued mapping from a nonempty weakly compact and convex
set � ⊂ X into X∗ with nonempty values. Then the problem GVI(T, �) has a solution if the
following conditions are satisfied.

(i) T has closed and convex values in X∗
s .

(ii) T (�) is a compact subset of X∗
s .

(iii) GT is closed in �w × X∗
s .

(iv) If {(xn, yn)}∞n = 1 is a sequence in GT with xn
w−→ x ∈ �, then lim inf

n → ∞〈yn, x−xn〉 ≤ 0.
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Proof The conditions (i) and (ii) imply that T has compact values in X∗
s . The assertion will

follow if T satisfies the (WSC) condition. Consider any sequence {(xn, yn)}∞n = 1 in GT with

xn
w−→ x ∈ �. With the condition (iv), {yn}∞n = 1 has a subsequence {yp(n)}∞n = 1 such that

lim
n → ∞〈yp(n), x − x p(n)〉 = lim inf

n → ∞〈yn, x − xn〉 ≤ 0.

By the condition (ii), there is a subnet {yα} of {yp(n)}∞n = 1 such that yα
w∗−→ y ∈ T (�). The

condition (iii) yields y ∈ T (x). For every u ∈ �,

〈yα, u − xα〉 − 〈y, u − x〉 = 〈yα − y, u − x〉 + 〈yα, x − xα〉
and

lim inf
n → ∞〈yn, u − xn〉 ≤ lim inf

n → ∞〈yp(n), u − x p(n)〉
≤ lim inf

α
〈yα, u − xα〉

= 〈y, u − x〉 + lim
α

〈yα, x − xα〉
= 〈y, u − x〉 + lim

n → ∞〈yp(n), x − x p(n)〉
≤ 〈y, u − x〉

This proves that T satisfies the (WSC) condition. �
Corollary 3.4 Let X be a reflexive Banach space, and let T be a multivalued mapping from
a closed convex cone � ⊂ X into X∗. Assume that the following conditions are satisfied.

(i) T has closed and convex values in X∗
s .

(ii) T maps every weakly compact subset of � onto a compact subset of X∗
s .

(iii) GT is closed in �w × X∗
s .

(iv) If {(xn, yn)}∞n = 1 is a sequence in GT with xn
w−→ x ∈ �, then lim inf

n → ∞〈yn, x −xn〉 ≤ 0.

Then either the problem MCP(T, �) has a solution, or there is an EFE for (T, �).
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